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Abstract: Wavelet transform as a multi-resolution analysis tool can be used to detect the 
contingent blunders or gross errors in a set of observations which plays an important role in 
geomatic analysis that is now done by the use of statistical methods. 
In this paper the one dimensional wavelet transform based on Haar wavelets and scaling functions 
has been used to separate the fine and coarse parts of the observation vectors and after that for 
distinguishing the existed blunders in them by interpreting the fine part. 
In a numerical example the efficiency of our desired wavelet based method has been compared with 
statistical approaches. 
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1.   Introduction 
 

Wavelet theory has been used in applied mathematics and engineering for well under thirty 
years (Zuofa Li 1996), notwithstanding, by virtue of its marvelous properties, it is now very 
engrossing tool for applied science specialists such as surveyors and geodesists. 
Mathematical transformations are exerted to signals to obtain further information, but it is not 
accessible in the raw signal. (In the following paper I assume a space-domain signal as a raw signal, 
and a transformed one beside any of the exerted transformations as a processed signal.) 
Most of the signals in practice are functions of time or space in their raw format; this representation 
is not always the best representation of the signal and it would be more efficient and obvious study 
the correspondent phenomena at the frequency domain, owning to the fact, their frequency contents 
correlate to fine and coarse information can be readily viewed at that domain. 

Regardless of the fact that, the Fourier transform is probably the most popular, but it also 
has its deficiency,  which can only tells us how much of each frequency exists in the signal, and not 
tell us when or where these frequency components exist. In contrast, the Wavelet transform 
provides the time-frequency representation that can answer to both questions; as well as this 
property, it is a multi resolution analysis tool which considers the data structure and is used as a tool 
to link different resolution levels. 

As we know, the physical observations always contain different type of errors which can be 
put into 3 main groups: blunders, systematic and random errors. These three types are inherently 
different and thus the corresponding behavior, to estimate the subsequent unknown parameter in a 
geomatics analysis procedure, will not be the same. 

The convenient scheme to distinguish the type of the error, existing in a set of measurements 
made to an observable, is usually based on statistical methods and the concept of confidence 
intervals; in this paper, the one dimensional discrete wavelet transform has been used to determine 
if some measurements were affected by grass errors or blunders.       
Before we proceed, it is necessary to review some foundations of the wavelet theory. 
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2.    An Introduction to wavelet transforms 
 
According to our knowledge a wave is the representation of an oscillating function in the 

time or space domain, such as a sinusoidal wave. Similarly a wavelet can be defined as a small 
wave with restricted energy in time or space.  

Fourier and wavelet transforms are both wave based analysis methods, In Fourier transform 
a signal is expanded through sinusoidal waves, but the expansion tool in wavelet transform are 
wavelets. 

If a signal or function f (t) can be expanded to a linear combination of some real-valued 
functions ( )()( tatf i

i
iψ∑= ), then analysis, representation and processing of that signal will be 

efficiently possible, and this is the base of spectral analysis. 
If the set of expansion coefficients is unique, for a given function, the expansion functions 

will be known as a base for the space contains f(t). This base will be orthonormal if: 
 

∫ =>=< lklklk dttttt ,)()()(),( δψψψψ                 (1) 
 

In such an orthonormal system, the expansion coefficients are computed through the 
following inner product: 

 

∫>==< dtttfttfa kkk )()()(),( ψψ                      (2) 
 

In a Fourier series, exponential functions are the orthogonal expansion functions; on the 
other hand, these functions, in a Tailor series, are non-orthogonal polynomials tk. 
Now, in comparison with two above series, the wavelet expansion of a function f(t), will be: 
 

∑∑=
k j

kjkj tatf )()( ,, ψ                                         (3) 

 
In the above series, the base functions, which can be orthogonal or not, are the wavelets and 

the expansion coefficients, aj, k s, are known as the discrete wavelet transform of  f(t)  and named as 
an inverse discrete wavelet transform, the above summation reconstructs the original signal. 

Being a mapping, DWP transforms a function to a set of two dimensional discrete 
coefficients and the reason for which the analysis of the transformed signal form both time and 
frequency points of views, will be possible, similar to a set of notes in a musical score which their 
position shows both time and frequency related to them.  

One of the characteristics of the wavelet transform is the capability of designing the base 
functions (wavelets) in the transformation, according to the desired application and its properties; 
nevertheless, all of the wavelet systems have the same following specifications: 
• All of the wavelets can be constructed by translating and scaling of a main producer 
function known as mother wavelet:  
                          

)2(2)( 2/
, ktt jj
uj −= ψψ                                 (4) 

 
In the above formula, )(tψ is the mother wavelet and indexes j and k are respectively the 

translation and scale parameters. Any changes in k, results in the position of the base function 
(wavelet) in the time-domain and as the same any alterations in j; alter the wavelet’s width and the 
resolution of the extracted information. 
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A wavelet system has time and frequency localization simultaneously; hence, it differs 
between the analysis of stationary and non-stationary signals in the wavelet transform 
 

2.1   scaling and wavelet functions 
As we know in Taylor expansion of a function, the first term of the series reflects a coarse 

perspective of the function and the other terms, containing the differentiations of the function, 
shows the details of it such that the further differentiations corresponds to more details of the 
function expanded; similarly, this property can be obtained in the wavelet analysis through a special 
function known as scaling function, besides the wavelets. 

The story starts with a base producer scaling function )(tϕ ; by translating this function a set 
of bases )}({ tkφ will be obtained: 
 

)()( κϕϕκ −= tt                                                   (5) 
 

These functions span a subset of )(2 RL : 
 

)}({0 tspanV kφ=  
)()(,)( 0 tatfVtf kϕ

κ
κ∑=∈∀                              (6) 

 
In a more general case )(tϕ can be dilated or stretched using a scaling parameter j, so we can  

reach the set { })2(2)( 2/
, κϕϕ κ −= tt jj

j  spans jV  
 

,)}({ , tspanV jkj φ=  
 

∑=∈∀
κ

φ )()(,)( , tatfVtf kjkj                             (7) 

 
(Note that the coefficient 2j/2 in the above base function definition is due to gain functions with a 
constant norm.) 

Providing that we construct the spaces Vj in a such manner, the scale parameter; j, will 
reflect the concept of resolution and the following relation exists: 

 
)(... 2

10 RLVV ⊂⊂⊂                                           (8) 
 

In conclusion, a recursive equation, as the base of multi- resolution analysis reveals the 
relation between the scaling functions in V spaces: 

 
∑ −= )2()(2)( ntnht φφ                              (9) 

 
In which the coefficients h(n), are known as scaling coefficients. 
Now, on condition we consider the orthogonal complement of Vj in Vj+1 as Wj, and the 

wavelet function ψj,k, mentioned before, will span this space: 
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                                 (10) 

 
Similar to the relation between the scaling’s functions, the following expression exits for the 

wavelets by introducing a new set of coefficients, g(n) ,s are known as wavelet coefficients:  
 

∑ −= )2()(2)( ntngt φψ                                   (11) 
 

By the way, the expansion of any given function belongs to L2(R), base on both scaling and 
wavelet functions is possible: 

 

∑ ∑ ∑
+∞

−∞=

+∞

=

+∞

−∞=

+=
k j k

kjkjkk tdtctf
0

,, )()()( ψφ                           (12) 

 
In the last expression, the first part consists of the coarse information of the function and the 

details are reflected at the second part; such that the bigger j, s the more obtained details. 
With an orthonormal base, the expansion coefficients are computed by using the following 

inner products: 
 

〉〈=
〉〈=

)(),(
,)(),(

,, ttfd
ttfc

kjkj

kk

ψ
φ

                                                   (13) 

 
The above coefficients are the discrete wavelet transform of f, and will being the last 

summation the inverse wavelet transforms reconstructs the original signal corresponding to the 
function f(t). 
 

2.2   Wavelet transforms and filters 
Considering the recursive relations, mentioned before, it can be shown that: 
 

∑ +−=
m j mckmhkcj )()2()( 1                                   (14) 

 
( )mckmgkdj

m j∑ +−= 1)2()(                                  (15) 

 
And reversely: 
 

∑ ∑ −+−=+ m mj mkgmdjmkhmcjkc )2()()2()()(1    (16) 

 
Now we can look at the wavelet transforms and its inverse as a filter which convolves a 

given sequence of a signal with some filtering coefficients and produces a new sequence in a 
different resolution; such that, if there exists a sequence of a function samples, these quantities will 
be corresponding to cj+1, s at the highest resolution and the signal sequence at the lower resolution 
can be derived by a low- pass filtering with impulse h (n). 

Meanwhile, the added details, wavelet coefficients, will be computed by using a high –pass 
filter with impulse g (n). This process is referred as the decomposition of the signal. Reversing this 
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procedure, known as synthesis or reconstruction of the signal can be obtained by using the inverse 
discrete wavelet transform in equation (16). 
 

3.   Blunders detections by using discrete wavelet transform 
 

Being the observations, the outliers or blunders appear to be inconsistent with the reminder 
of the collected data (Iglewicz, 1993). As we know, the statistical procedure is the convenient 
scheme to determine if there exist some blunders in a set of repeated observations made to a given 
physical quantity. The criterion will be a defined confidence interval at a specific confidence level, 
(1-α); such that any observation, existing out of this range will probably be a blunder and must be 
discarded in the future analysis procedure based on the measured quantities. 

One of the most interesting peculiarities of the wavelet transform is the possibility of 
separating the high and low resolution parts in a given signal; therefore, we can obviously extract 
the details of a signal, corresponding to the different frequencies existing in it. Conceded that this is 
the characteristic of some similar mathematical transformations such as Fourier transform, but in 
the wavelet transform, the frequency contents of a signal contain the corresponding times or spaces 
of occurrence. Now if a physical quantity is measured ‘n’ times, the vector containing these 
quantities can be considered as a time series with a relatively constant domain in which are small 
fluctuations for the sake of the existing errors; accordingly, by separating the fine and coarse parts 
of the vector using the decomposition procedure in the wavelet transforms, we hope to encounter 
with an obvious difference in the fine part of the vector of observations at the elements containing 
gross errors. 

It has been mentioned that one of the useful properties of the wavelet transform is the 
possibility of designing of the base wavelet functions related to the desired application; it can be 
shown that in a wavelet system with "N" scaling or wavelet coefficients, after applying the 
existence and orthogonallity conditions of the base functions, will be "N/2-1" remaining degrees of 
freedom in designing or choosing the base functions. 

It is needless to say, the resulting details of the observation vector will be varied in each 
selected or designed wavelet system; here, we have used the simplest system with N=2, known as 
'Haar' wavelet system without any remaining degrees of freedom; the main reasons for this 
selection, couple with the simplicity of the computations, is the special property of the ‘Haar’ 
system in which scaling and wavelet coefficients are: 

 

}2/1)1(,2/1)0({)(

},2/1)1(,2/1)0({)(

=−==

===

ggng

hhnh

 
 

So, the computed images of the fine and coarse vectors at the argument (time) space, choose 
a special form such that every two adjacent elements of the coarse vector image will be the same 
and equal to the mean of two corresponding elements at the raw observation vector; furthermore, 
the detail vector is the difference of the first observation and the coarse vector computed by the 
wavelet transform; therefore the following expressions will be valid in such a system: 
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Fig 1. Diagrammatic procedure to compute the fine and coarse parts of observation vector using 

Haar system 
 

As can be seen, the results of these transformations to the frequency and then back to the 
time domain are the images of the coarse and fine parts of the observation vector; our criteria to 
distinguish the probable blunders existing in the vector of observation will be based on the quantity 
of the elements of the image of the fine part; such that in the event there exists no blunder, the 
elements of the mentioned vector are very close to zero; because at the ‘Haar’ system used, each 
pair of the adjacent elements in the fine vector will be computed by subtracting the two 
corresponding elements of the original vector of observation. (see figure1) On the other hand, the 
existence of some blunders will cause an obvious deviation from zero in two corresponding 
elements of the fine vector. 

Now, we are supposed to discuss the maximum permitted deviations from zero in the 
elements of the image of the fine vector. 

There are some exceptions in the above scheme that I would rather explain during the 
following examples. 
 

 
 

Vector of observations 
,...],,,[ 43211 llllln =×

r
 

1D discrete (Haar) 
wavelet transforms 

The coarse part of the observation vector 
at the frequency domain 
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vector at the frequency domain 
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3.1   Numerical example 
Illustrating the wavelet based method and related exceptions, three numerical examples will 

be introduced in this section. 
The arc-second portion of 50 direction readings from 1" instrument are listed below as the 

vector of observation may contain some blunders. 
 

1l
r

= [41.9 49.5 42.6 45.5 46.3 45.5 47.2 43.4 44.6 43.3 47.4 45.5 46.1 42.6 44.7…       
 
43.1 42.5 44.3 44.2 46.1 45.9 46.1 46.3 43.6 45.0 45.6 49.5 41.8 42.0 52.0 46.0 … 
 
44.7 47.5 45.5 44.3 46.2 43.2 43.4 42.8 43.2 43.0 42.2 47.1 46.8 45.7 44.3 44.7 … 
 
47.6 44.1 45.6], 
 

At first, the two conventional statistical approaches, based on “z- score method” and the 
confidence interval constructed by the normal distribution have been used to determine the probable 
blunders, respectively. The results of these two methods, by considering a 95 percent confidence 
interval would be the same: 

The 2nd, 27th and 30th elements of the observation vector will be distinguished as blunders.  
Now, let’s use the wavelet transformation to see the result of our desired scheme and 

compare it with two above statistical methods. 
The images of the coarse and fine parts of the 1l

r
 , based on the approach, shown on figure 1, 

will be: 
 

=1'cr [45.70  45.70  44.05  44.05  45.90  45.90  45.30  45.30  43.95  43.95  46.45  46.45… 
    
44.35  44.35  43.90  43.90  43.40  43.40  45.15  45.15  46.00  46.00  44.95  44.95… 
 
45.30  45.30  45.65  45.65  47.00  47.00  45.35  45.35  46.50  46.50  45.25  45.25… 
 
43.30  43.30  43.00  43.00  42.60  42.60  46.95  46.95  45.00  45.00  46.15  46.15… 
  
44.85 44.85] 
 
And 
 

=1'd
r

[-3.80  3.80  -1.45  1.45  0.40  -0.40  1.90  -1.90  0.65  -0.65  0.95  -0.95  1.75… 
    
-1.75  0.80  -0.80  -0.90  0.90  -0.95  0.95  -0.10  0.10  1.35  -1.35  -0.30  0.30  3.85… 
 
-3.85  -5.00  5.00  0.65  -0.65  1.00  -1.00  -0.95  0.95  -0.10  0.10  -0.20  0.20  0.40… 
 
-0.40  0.15 -0.15 0.70  -0.70  -1.45  1.45  -0.75  0.75]; 
 

Let’s take a closer look at the last gained vector, as a prototype, the image of the fine part at 
the time domain, in figure 2. We can see the two largest picks with same quantities and opposite 
signs, corresponding to adjacent 29th and 30th elements of the image of the details, then the larger 
elements will bet the pairs (2nd, 3rd ) and ( 27th , 28th).  
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We expect that the probable blunder would be investigated among tree of these six 
components, because in the detail part of an observation vector without the blunders all elements 
should be near to zero; so the larger elements’ magnitude of the fine vector, the less confident 
observation. 

 
Fig 2. The image of fine part of observation vector 

 
Now, we are encountering a problem to distinguish the actual blunder between two adjacent 

elements corresponding to two symmetric large picks in the above shown detail vector. To solve 
this problem, two adjacent doubtful observations is omitted, one at a time and by the use of the 
scheme presented in figure 1, the image of detail vector at the time domain is computed once more. 
The blunder is the one, which its corresponding large pick will not be removed as a result of its 
omission; on the contrary, if we abandon the precise observation the above shown large pick will be 
removed too; therefore, it can be stated now that the most probable blunder among the above 
sample observations will be 30th and then 2nd and 27th ones, just the observation had been detected 
by the classic statistic methods. 
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Fig 3a-c. The image of the fine part of the observation vector. a all the observations used and the 
largest picks can be seen at 29th and 30th elements. b the 30th element has been omitted and the 

corresponding pick was removed. c the 29th element has been omitted but the largest pick has not 
been removed 

 
4. Conclusions and proposals  
 

In succinct, to sum up the main points in a few words, we deduce this following statement:  
- The wavelet transform can be used to analyze a given observation vector to investigate the 
probable gross errors or blunders as an alternative method instead of conventional statistical 
methods. The main advantage of the wavelet based method is its identicalness which has been the 
weakness of statistical approaches. 
- Haar wavelet system used makes an ambiguity, in which the amplitude of the corresponding 
detail vector element, before or next to the blunder will be as large as the amplitude of the blunder’s 
fine part. This problem was solved by omitting the two adjacent elements, one by one and 
comparing their related details. 
The above ambiguity is inherently related to the base functions used at the wavelet system. Further 
researches may suggest another famous wavelet system or design a  
suitable one, by which the blunders would be clearly distinguished between the fine vector 
elements. 
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