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 Abstract: It is well known that a least square adjustment is very sensitive to large 
errors in observations. Therefore, any estimated parameters will be affected by these errors. 
In this paper, we present methods based on the principle of iterative weight, by emphasizing 
the disadvantage of the use of these methods when there is more than one large error present. 
We also analyze the possibility of using the Fuzzy Logic as an alternative to methods 
developed on the principle of iterative detection of large errors. 
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1. Introduction 
 
Precision in determining geodetic networks mainly depends on the measurement 

instruments, the techniques of such measurement and the mathematical model of adjustment. 
The mathematical model used for adjustment influences the precision of determining 

networks through conditions imposed by the model, as well as the possibilities of the model to 
identify the measurements which have a negative influence over the unknown parametric 
precision of the model. 

In this way, identifying all measurements affected by large errors and removing them, 
or reducing their influence over the unknown parameters increases the precision of 
determining the geodetic networks. 

It is important, therefore to establish the minimal value of the errors’ influence may 
exert on unknown parameters. This value must be the criterion underlying among 
measurements with acceptable errors, as well as measurements with large errors (outliers). 

The procedures for identifying outliers are based on statistical tests, which are applied 
to the squares residuals and the correlation among residuals. Because of this, the sensitivity of 
these procedures is limited. 

For more than 45 years, the geodetic community has been conducting research in the 
field of large error identification. 

In 1965, Prof. Dr. Willem Baarda started research in this field and published the 
results in: “A test procedure for use in geodetic networks”.  

Other researchers have also presented different techniques of identifying large errors. 
In the present paper, we shall introduce a procedure - less known in our country - 

which uses statistical tests and fuzzy logic. 
As far as this procedure is concerned, firstly, we shall define large errors and then 

briefly present a few of the classical methods of error identification. We also present basic 
concepts of fuzzy logic, as well as fuzzy sets as well as their properties. Following this, we 
shall describe the algorithm of identifying outliers by using the fuzzy technique. The last part 
of the paper presents an application of the fuzzy logic in a GPS network. 
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Defining “outliers” 
It is generally assumed that geodetic measurements have random errors with normal 

distribution. The localised, larger disturbances are considered outliers, whereas the smaller 
ones are constant and are labelled as systematic errors. 

Normally, we consider outliers to be random errors within the deviation of a normal 
distribution; such errors do not belong to the population featuring a normal distribution and, 
therefore, they are difficult to identify. 

The study of large errors has mainly interested statisticians who have developed 
different methods for discovering them. Unfortunately, their methods are not universally 
applicable. 

In conventional methods, such as “Data Snooping (DS) “, “Tau” and “t-test”, the 
outliers are determined through an iterative process, by applying statistical tests and, then, 
they are eliminated from the observations set.  

 
Classical methods 
 
Data Snooping (DS), has been suggested by Prof. Baarda and can by applied only if 

the theoretical value of unit weight ( )2
0σ  is known. If this value is unknown, the a priori 

variance ( )2
0s  can be used instead. In triangulation, levelling and GPS networks, the Ferro 

equation can be used: 
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where: 
w  -is the vector of discrepancies in triangles (polygons); 

mn -is the number of measurements in each triangle (polygon); 

tn  -is the number of triangles (polygons) from network; 

mn  = 3 in triangulation networks, 9 in GPS networks, minimum 3 in levelling 
networks; 

DS is realized using normalized residuals. The statistic is compared with critical value 
obtained from normal distribution: 
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where: 
v  -is the vector of residuals; 
P  -is the observations weight matrix 

vvQ -is the cofactor matrix of residuals 
The critical value is: 

2
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where: 
0α -is the significance level 

2χ,, FN - are values from tables of: normal distribution, Fisher’s distribution and 
2χ distribution. 

The significance level for one observation 0α  is calculated by using the relation: 
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where: 
α -is the total significance level, usually is considered 5%. 
n -is the number of observations. 
 
Tau test: If the a priori variance is not known, or a certain value cannot be established 

prior to adjustment, then a posteriori variance )( 2
0m is used for indentifying outliers. 

The residuals normalized with a posteriori variance are not normally distributed. 
These are distributed in Tau ( )τ : 
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where:  
f = degrees of freedom 
n = is the number of measurements 
u – is the number of unknown parameters 
d – is the rank defect 
 
The relation for calculating the statistic is: 
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The relation for determination of the critical value τ : 
 

2
211

2
211

21
0

00

/,

/,

/, 1 α

α

ατ
−−

−−

− +−

×
==

f

f

f tf

tf
q  

(7)

Where:  
t –is the theoretical value of Student test; 
τ  –is the value of Tau given in table  
 
T-test: If the observation )( il  has an error )( iΔ , it is not recommended to identify the 

outlier by using a posteriori variance from an erroneous adjustment. In such a situation, it is 
better to use the variance from which the influence of the suspected error has been eliminated: 
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Where:  
2

0m  -is a posteriori variance from which the influence of the suspected error has been 
removed 

The relation for a statistical calculation is: 
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The relation for calculating the critical value is: 
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211 0 /, α−−= ftq  (10)

The Fuzzy Logic Method 

All procedures based on probabilistic calculation can only test one large error. If the 
observations have more large errors, then an iterative process is applied. In doing so, for each 
step, the error exhibiting the largest absolute value is tested. 

According to the model of adjustment measurements based on the Gauss-Marcov least 
squares method, the determination of parameters x, having minimum dispersions, from 
observations l (having covariance matrix lQ ) is based on the relation: 
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where: 
 A  -is the design matrix; 
 dx  - is the vector of corrections applied to the approximate parameters 0x ; 
 Δ  - is the vector of observations errors; 
 2

0σ -is the variance factor; 
uArang =)(   

u - is the number of parameters; 
The mathematical relation existing among residuals and observations errors is: 

Δ)( 1−−= l
T

x QAAQIv  (12)
Δ1−= lv QQv  (13)

ΔRv =  (14)
where: 

PAAQ T
x =  with the weight matrix 1−= lQP ; 

)( 1 PAAQPQ T
xv −= −  - the variance-covariance matrix of corrections v; 

PQR v=  - is denominated the redundant matrix; 
The matrix R is: 
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where: 
iir  with i = 1, 2, ... , n, are redundancy components.  

According to relation (15) the residuals v depend not only on the observation errorsΔ , 
but also on the components of the redundant matrix R.  

Applying the least squares adjustment, the trace of matrix R gives us the number of 
degrees of freedom of the network, regardless of the fact that the observations are correlated 
or not.  

 
dRtr =)(  (16)
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Equation (15) demonstrates that each value iv is obtained from a complicated relation 

including all observations errors resulting from adjustment. This relation does not only 
depend on the accuracy of the observations (expressed by lQ ) of geometrical and physical 
constraints between measurements (expressed by )(xf ), but also on the adjustment principle. 

Strictly speaking, if a value iv does not pass the statistical test, this merely indicates 
the fact that some observations associated with this value are strongly affected by large errors.  
To identify these errors, all the coefficients ijr  of the R matrix must be taken into account. 

The identification of outliers by using the Fuzzy Logic presented by W. Sun is based 
on Professor Lotif Zadeh’s idea to extent the clear limits of the variables under discussion 
exhibiting a specific degree of uncertainty, to less clear limits, by using membership 
functions. 

If classical logic can suggest that if an object belongs to a population (set) or not, the 
Fuzzy Logic allows for a more flexible interpretation of the membership notion. Therefore, in 
various degrees, many objects can belong to a set. Mathematically this may be expressed as 
follows:  

Let X be a set of the elements x. A fuzzy set A defined on set X is characterized by the 
membership function )(xAμ . This function associates a degree of membership to each 
element x in set A. 

 

( ) 1],[: 0→XxAμ  (17)
  

In order to represent a fuzzy set, the membership function must be defined.  
Thus, a fuzzy set A is completely defined by the set of ordered pairs:  

 
( ) }|),{( XxxxA A ∈= μ  (18)

 
For detecting outliers by using the Fuzzy Logic some steps are required: 
The first one consists of testing the existence of large errors in measurements. This can 

be done by testing the hypothesis of equality between the theoretical variance and the 
estimated one (a priori variance and a posteriori variance). 
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The null hypothesis is accepted if the test is verified: 
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Where:  
t – the redundancy of the concerned problem; 
α – significance level for statistical test. 
Because: 
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The equation (20) can be written: 
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2

1 αχ −< ,t
T rPr  (22)

 
If this test is not passed, then the hipothesis 0H  is rejected with a significance level α. 

This is indicative of the fact  that there is something wrong with the observations. 
We assume that the observations with large errors and which are most probably 

abnormals, are those with the largest contribution in residuals, whereas the observations with 
the smallest contribution are normals. 

In order to make a fuzzy set for localizing large errors among the set of observation 
errors, we form two subsets: subset A, which is defined as the set of observation errors with 
the largest contribution in residuals, and subset B, which is defined as the set of observations 
errors with the smallest contribution in residuals.  

In fuzzy set terms, the set of large errors H is defined as the intersection of sets A and 
B: 

 

BAH ∩=  (23)
 

If the membership functions )( iA Δμ  and )( iB Δμ  of sets A and B are known, then the 
membership function of set H is: 

 

))(),(min()( iBiAiH ΔμΔμΔμ =       i=(1,2,...,n) (24)
 

According to the relation (24), )( iH Δμ  is equal to 1.0 only if )( iA Δμ  and )( iB Δμ  are 
1.0 simultaneously. In other words, the observation errors are suspected to be outliers only 
when they have the largest contribution to abnormal residuals and the smallest contribution to 
normal residuals at the same time.  

We argue that  the error with the largest value of membership function is likely to be 
an outlier. 

If a critical value 
H

C μ is established for the values of membership function )( iH Δμ  
we can differenciate errors as following: 

 
large errors  if )( iA Δμ >

H
C μ   

iΔ  belongs to 
⎩
⎨
⎧

 normal errors if )( iA Δμ <
H

C μ   
 

(25)

To make this differentiation, we argue that a method for evaluating membership 
function as well as a method for calculating the critical value must be found. 

Acording to the Data Snooping theory (DS), if the observations are uncorelated, then 
normalized residuals have a normal distribution. 
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Where: 
iw  - normalized residuals; 

ivq  - elements of diagonal of cofactor matix of residuals;  

)( PAAQPQ T
xv −= −1  (27)

For significance level α when testing each observation we realize this comparison: 
)0,1(/ 21 α−≤ Nwi  (28)
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If a standardised residual is greater than the critical value, i this is considered as 

affected by large errors. Otherwise, the residual is not influenced by large errors. 
In this way, two fuzzy subsets were formed: subset )( ivN , consisting of normal 

residuals (the tested values are smaller than the critical value), and subset )( ivM , consisting 
of abnormal residuals (the tested values are larger than the critical value).  

For these subsets, the membership function is calculated as follows: for subset )( ivN , 
the membership function is zero and the values of the membership function of the subset 

)( ivM  belong to the interval (0,1). 
According to this rule, the membership function is: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

−
+

≤

= −

−

−

21
2

21

21

1

1
0

/

/

/

;
)(

;

)( α

α

α

αμ Nw

Nw
r

Nw

v i

i
ii

i

iM  (29)

where: iir is the redundance and α  is the significance level. 
With relation (29), the membership function values are determined for the residuals 

from subset )( ivM , that are most probably affected by large errors. For subset )( ivN , the 
values of membership function are calculated using the complementarity property of the 
Fuzzy Theory: 
 

)()( iMiN vv μμ −= 1  (30)
For determining the membership function of observations errors is used the 

redundancy matrix normalizing all elements thus: 

ij

ij
ij r

r
r

max
~ =   i,j = 1, 2, 3,...,n (31)

In this way we obtain the relative redundancy matrix R~  with elements belonging to 
the interval (0,1). 

ijr~  represents the relative contribution of the jth observation error on the ith residual. 

Therefore the rows of matrix R~  represent the relative contribution of all observation 
errors to an individual residual and columns of the same matrix represents the contribution of 
an observation error to all residuals. 

Furthermore, the membership functions )( iA Δμ  and )( iB Δμ  asociated to subsets A 
and B are calculated, using the membership functions asociated to residuals Nμ  and Mμ  and 
matrix R~ , as follows: 

Using α_cut in the subset )( ivM , the maximum effect of ith observation error in the 
residuals with membership function values 0.5)( ≥iM vμ is calculated using the relation: 

)~max(~
kimi rr =  ; 50.Mvk ∈  (32)

Then, the membership function values of observation errors from subset A are 
calculated using the following relation: 

)(~)( iMmiiA vr μΔμ ⋅=   (33)
In the same way, the membership function values of observation errors from subset B 

are determined as follows:  
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)(~)( iNniiB vr μΔμ ⋅−= 1   (33)

where: nir~ - the maximum effect of ith observation error in the residuals with 
membership function values 0.5)( ≥iN vμ  calculated with the relation: 

)~max(~
kini rr =  ; 50.Nvk ∈  (34)

The observations possibly affected by large errors are those which have the maximum 
effect in abnormal residuals, or have the minimum effect in normal residuals. 

The maximum membership function value, obtained from equations (33) and (34), 
indicate the degree of deviation from the normal of the Li observation. 

According to the theory of fuzzy sets, after reunion the two fuzzy subsets A and B, 
having membership functions )( iA Δμ  and )( iB Δμ , the H subset is obtained with the 
membership function given by: 

))(),(max()( iBiAiH ΔμΔμΔμ =   (35)
From this relation, we can conclude that the membership function value from the H 

subset indicates the observation outlying degree from normal. Thus, analyzing the 
membership function value we can decide if an observation is affected by large errors or not. 

In order to determine the critical value we use the weighted average defuzzyfication 
method as follows: 
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At the end, the test HiH C≥)(Δμ  is applied to detect if subsets A or B contain the 
large errors. 

 
Case study 

 
Fig. 1 
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In this study the GPS network observations (fig. 1) have been analized in two cases: 

variant 1 and variant 2. The properties of both variants are presented in table below: 

Conclusions 
Both networks have been adjusted as unconstrained networks, by using point 112 as a 

fixed point. Since, after the adjustment the normality test has been passed, observations with 
large errors have been simulated. 

Vectors 112-YU19 and 111-ZU18 have been modified on purpose. Following the 
adjustment, the normality test has not been passed. To determine large errors we used the t-
test. 

Because in 3D networks the vectors are determined, if a component of a vector is 
determined as being a large error, all the other components of that vector are eliminated. The 
same network was tested by using the fuzzy logic. The same components affected by large 
errors were also determined by using the Fuzzy Logic.  

This method of approach is not entirely correct, because we assume that observations 
are independent. Considering onlythe correlation among the three components of a measured 
base will be subject of a different research.  
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Tabel 1. 

Informations about network Reţea1 Reţea 2 
Number of points 13 6 
Number of fixed points 1 1 
Number of basis 61 15 
Number of observations n 183 45 
Number of unknowns u 39 15 
Rank deficiency d 0 0 
Redundance r 144 30 
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