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Abstract: Modeling is a widespread method used for understanding the physical 
reality. Among the many applications of modeling are: determining the shape of the earth's 
surface, geological and geophysical studies, hydrology and hydrography. Modeling is 
realized through interpolation techniques such as kriging method and geodetic least-squares 
collocation. In this paper is presented a comparison between these two methods. 
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1. Introduction 
 

Kriging is a very popular method used in geostatistics to interpolate the value of a 
random field (or spatial stochastic process) from values at nearby locations.  

Kriging estimator is a linear estimator because the predicted value is obtained as a 
linear combination of known values. This and the fact that kriging technique is based on the 
least-squares principle have made some authors [1] to call it optimal predictor or best linear 
predictor. Depending on the properties of the stochastic process or random field, different 
types of kriging apply. 

Least-squares collocation is an interpolation method derived from geodetic sciences, 
first introduced by H. Moritz, for determining the earth's figure and gravitational field. 
Collocation method can be interpreted as a statistical estimation method combining least-
squares adjustment and least-squares prediction 

Another important component in estimation of a random field from discrete values 
measured or known in various spatial locations, is a parameter or function of the process 
which describes its spatial dependence. This parameter has a great influence over the 
interpolated values. This function is called the variogram of the spatial stochastic process. 

 
2. Variogram 

 
In geostatistics the variogram is a function describing the spatial correlation or 

dependence of a spatial stochastic process. Let 
  1 2 1 2var ( ) ( ) 2 ( )Z s Z s s s    (1) 

for all spatial locations s1, s2 from the respective domain (field), where s1-s2 is the lag 
distance between any two spatial locations. The quantity 2γ has been called variogram, and 
respectively γ has been called semivariogram.  

Experimental Variogram of a Stationary Process 
Considering a spatial stationary process (process with unknown and constant mean) 

where we have observed values Z(si) in spatial locations si, the experimental variogram is 
calculated from every pair of measured values with the formula below. 

mailto:andrei.serban.ilie@gmail.com


 
 

University “1 Decembrie 1918” of Alba Iulia                                                                          RevCAD 16/2014 
 

 - 128 -

  2
2 ( ) ( )ex i jZ s Z s    (2) 

where Z(si) and Z(sj) are two pairs of observed values. 
The Variogram Estimator 
Similar to the descriptive statistics we have to group the ߛex values in classes 

according to lag distance si-sj=Dij. The variogram estimator is the averaged experimental 
variogram values from a certain class. 

The lag distance h, of a class, is empirically determined [2] as the mean minimum 
distance between observed points: 

 
1

1 min( ),    j=1, ,   j i
n

ij
i

h D n
n 

   (3) 

where n is the number of observed values. 
Then the variogram estimator γE for a certain class k is: 

 
( )

1

1 ( ),   (h-1)k D
( )

n k
k i
E ex ij ij

i
D hk

n k
 



    (4) 

where n(k) is the number of γex values in class k and γi
ex(Dij), are the γex values that fall 

in class k. 
Now the lag distance DE corresponding to the γE values is 

 
1

1 ,   (h-1)k D
( )

k
k
E i i

i
D D hk

n k 

    (5) 

where Di are the distances that hold with the property on the right side of the Eq. (5). 
If we plot the γE values with respect to the distances DE, and also, on the same graph, 

the population variance var(Z), the estimated (semi)variogram is obtained (see Fig. 1): 

 
Fig. 1. The Estimated Semivariogram Plot and Population Variance 

 
The figure indicates that the spatial process is correlated over short distances while 

there is no spatial dependency over long distances [3]. 
Variogram Model Fitting 
Various variogram model fitting techniques had been proposed [1], [4]. Among them 

are distinguished methods based on least squares and maximum likelihood algorithm. Three 
models (linear, spherical and exponential) have been fitted over the semivariogram plot 
showed in Fig. 1. The models are shown in Fig. 2. 
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Fig. 2. Variogram Model Fitting 

 
3. Ordinary Kriging 
This section deals with the ordinary kriging estimation method. 
Assumptions 
Model assumption: 

 i iZ     (6) 
Ordinary kriging assumes an unknown constant trend for the respective process. This 

is the case when the process is presumed to be stationary. In Eq. (6) this trend is represented 
by µ, which, as we said, is unknown but constant. δ from Eq (6) represent the signal of the 
process in the point i. 

Predictor assumption: 

 
Fig. 3. Kriging Prediction 

 
Kriging is a least squares estimation algorithm in which the predicted value of a 

process, in a location P, where no observations have been made (see Fig. 3), it is obtained 
with the Eq. below: 

 
1

n

P i i
i

Z Z


  (7) 

where ZP denotes the interpolated or predicted value of the stochastic process in the 
point P, Zi are known values of the respective process in certain spatial locations and λi are the 
corresponding weights for Zi values, satisfying the following condition: 
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1

1
n

i
i




  (8) 

the unknowns λi will satisfy the following system of linear equations: 
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1
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1 



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  
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1'Γ γλ Γ γ 1
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 (9) 

where:  
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  1,..., 'n λ  (11) 

  0 1 0( ),..., ( ) 'ns s s s   γ  (12) 

  1,1,...,1 '1  (13) 
 

The matrix form of Eq. (7) is: 
 0( )Z s  λ'Z  (14) 

then, replacing (9) in (14) is obtained another Eq. for computing the predicted value: 

 
1

1
0 1

1 '( ) ' 'Z s





 
  
 

γ Γ 1γ 1 Γ Z
1'Γ 1

 (15) 

 
4. Least-Squares Collocation 
 
Collocation is a data processing method which simultaneously performs regression 

(determining trend surface), filtering and spatial prediction [5]. 

 
Fig. 4. Collocation 

 
Collocation method assumes the fact that measurements consist of two components 

shown in Fig. 4: 
 A systematic component (trend surface) 
 A random component composed of signal (determined by local factors) and noise 

(caused by measurement errors). 
Through collocation one can perform regression (determining the parameters of the 

trend surface), filtering (noise elimination), and prediction. 
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Functional model 
 0 ( )i i i j iM v F x     (16) 
 00   Ax v δ δ 0  (17) 

where v is the noise, δ is the signal in measured points and δ0 is the signal in 
interpolation points. x contains trend surface parameters. 

Notations: 
 [  ]B -I I 0  (18) 
  0 'e v δ δ  (19) 

With the notations (18) and (19), (17) becomes 
   Ax Be l 0  (20) 

Stochastic model 
Cofactor matrix form is: 

 0

0 0 0

 
 
 
 
 

ll

δδ δδ

δ δ δ δ

Q 0 0
Q = 0 Q Q

0 Q Q
 (21) 

where Qll is the cofactor matrix for measured values: 

 
1 1

0 0

0 0
0 0

n n

l l

ll

l l

q

q

 
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 
 
 

Q =   (22) 

Cofactor matrix of the signal can be established on the basis of certain theoretical 
considerations. Such theoretical considerations may be the spatial dependence between certain 
locations, or, in other words, the semivariogram of the spatial process. Then 
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where si denotes a spatial location where the value of the spatial stochastic process is 
known from measurements 
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 (24) 

where si
0 refers to a spatial location where the value of the respective process is 

unknown but desired. 
The parameter vector x and the vector that contains the signal in interpolation points 

δ0 is obtained with the following Eq.: 

   1 1                                
   -1x A'Q A A'Q l  (25) 

 1 ,  where    0
0

ll δδδ δ
δ Q Q (Ax + l) Q Q Q  (26) 

The predicted values of the random field or process in spatial location s0 where no 
measurements have been made will be: 
 0

0 0( )Z s A x    (27) 
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where Ao is vector which contains the coefficients for the trend surface parameters 
towards the spatial location s0, so Aox is the value of the trend surface in considered spatial 
location. 
 

5. Kriging as a particular case of collocation 
 

In this section we will prove that ordinary kriging method is a particularization of the 
least-squares collocation under certain conditions. 

If we neglect the measurements errors then: 
 llQ 0  (28) 

Also we assume that the stochastic process or random field has an unknown constant 
trend. A process that holds this property, as we said in section 2, is called stationary process. 
The Eq. below is the mathematical expression of this property: 
 x  (29) 

In this case the design matrix has the following form 
  1,1,...,1 'A  (30) 

so, 
  Ax 1  (31) 

The measurements vector will be: 
  1 2, ,..., 'nZ Z Z     l Z  (32) 

If we consider only one prediction point or one spatial location where we want to find 
the value of the process, then 0δ δ

Q  matrix has the following form: 

  0 1 0( ) ( )ns s s s  0δ δ
Q =   (33) 

so, from (33) and (12) we obtain: 
 0δ δ

Q γ'  (34) 
From (23), (28) and (10) Q  matrix is given by: 

 Q Γ  (35) 
Considering this particular case (31), (32), (34), (35), and the Eq. (26) and (27) the 

predicted value in spatial location s0 is: 
 1

0( )Z s     γ'Γ ( 1 Z)  (36) 
or 

 1 1
0( )Z s      γ'Γ 1 γ'Γ Z  (37) 

The constant trend is given by (25): 
   1 1

  -11'Γ 1 A'Γ Z  (38) 
so, from (38) an (37), the predicted value in location s0 is: 

   11 1 1
0( ) (1 )Z s

     -1γ'Γ 1 1'Γ 1 1'Γ Z γ'Γ Z  (39) 
and, knowing that 1’Γ-11 is a scalar, we obtain the following Eq. 

 
1

1
0

(1 )( )Z s


 
  
 

-1

γ'Γ 1 1' γ' Γ Z
1'Γ 1

 (40) 

Now, looking at (40) and (15) we realize that these are one and the same. So kriging 
method is just a particular case of least-squares collocation. This particular case is 
obtained considering the process stationary, and neglecting the measurement errors. 
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6. Case study 
 
To verify the above results in practice, from a set of data, the surface model has been 

generated using both kriging and collocation method. 

 
Fig. 5: Surface Model Generated using Kriging Method 

 
In Fig. 5 is shown the surface model obtained by kriging method and in Fig. 6 is 

presented the surface generated using least-squares collocation. Note that the same linear 
variogram model had been used for the two methods. The variogram model was given by: 
 
 ( ) 1.3576h h     (41) 

 
Fig. 6: Surface Model Generated using Least-Squares Collocation Method 

In Fig. 6 is also represented a plane which is practically the trend surface determined 
by least-squares collocation. The trend surface is a constant one. This is a consequence of the 
stationarity condition which implies an unknown and constant mean μ for the respective 
process. 
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Fig. 7: The Differences in the Estimated Values 

 
A plot of the differences in the values estimated using the two methods is represented 

in Fig. 7. As it can be seen the differences are of the order 10-9. These values can be attributed 
to computational errors. So the theoretical considerations, that kriging is just a special case of 
least squares collocation, are confirmed in practice. 
 

7. Conclusions 
 
• Ordinary kriging is a very useful tool for surface modeling derived from geostatistics. 
The algorithm gives precise results and the input data is honored by the model. The algorithm 
requires a valid variogram model for the spatial process. Modeling the variogram is the most 
difficult stage in kriging estimation technique.  
• Ordinary kriging method is a special case of the geodetic least-squares collocation. 
Several assumptions are made in order to derive kriging technique from least-squares 
collocation method. First is that the process is considered stationary, meaning that it has an 
unknown and constant mean. Second, and maybe most important, is that in kriging method 
the measurement error is neglected. Note that the same variogram model must be used for the 
two methods to coincide. 
  

8. References 
 
1. N. A. Cressie, Statistics for Spatial Data, John Wiley & Sons, 1993.  
2. R. Webster and M. A. Oliver, Geostatistics for Environmental Scientists (Statistics in 

Practice), New York: John Wiley & Sons, 2001.  
3. M. H. Trauth, MATLAB® Recipes for Earth Sciences, Berlin: Spriger, 2006.  
4. J.-P. Chiles and P. Delfiner, Geostatistics Modeling the Spatial Uncertanty, New York: 

John Wiley & Sons, 1999.  
5. B. Hofmann-Wellenhof and H. Moritz, Physical Geodesy, Wien: Springer-Verlag, 2005.  
 


