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Abstract: With the advent of GNSS technology in geodesy, mathematical models have 
been developed to combine these observations with the terrestrial measurements. Most of 
these models are based on 3D coordinate systems. In this paper, a possibility of combining 
GNSS and terrestrial observations in two-dimensional geodetic networks is presented. 
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1. Introduction 
 
A sequential adjustment of a geodetic network assumes that measurements are 

processed in at least two stages. The results in the first stage will become observables in the 
next stage. This is particularly important for geodetic networks in which GNSS and classical 
observations have been made. As we know GNSS networks are three-dimensional networks. 
One will find a difficult task in combining both satellite and terrestrial observations, 
especially when terrestrial observations are only two-dimensional (horizontal directions and 
ellipsoidal distances). Of course a solution can be to express the GNSS baselines by his 
horizontal and vertical components and then to combine only the two-dimensional component 
of GNSS baselines with terrestrial 2D observations. This implies that GNSS measurements 
are reduced (modified) to be compatible with the mathematical model  

In this paper is presented another method of combining GNSS and two-dimensional 
terrestrial data, without the need to reduce GNSS baselines to the ellipsoidal system. First 
GNSS baselines are adjusted in their own 3D coordinate system and then the results are 
converted in the ellipsoidal geodetic coordinate system. Next, through the sequential 
adjustment model, terrestrial observations are added, thus achieving the final results. 

 
2. Least-squares adjustment with observation equations 

 
Functional model 

 v = A x + l  (1) 
Stochastic model 
Stochastic model is given by the least-squares condition: 

 min  Tv P v  (2) 
and by weight matrix below: 
 2

0  MP = Σ  (3) 
Normal equation matrix 

 TN = A PA  (4) 
Estimated parameters 

 -1 Tx = -N A PL  (5) 
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A posteriori (estimated) standard deviation of unit weight: 

 0S
n h d

 
 

Tv Pv  (6) 

Cofactor matrix for the unknowns: 
  -1

xxQ N   (7) 
Estimated variance-covariance matrix for the unknowns: 

 2
0S xx xxΣ = Q  (8) 

Sequential adjustment model 
Sequential adjustment is a model which applies when observations are made in two 

stages, and there is a set of common parameters between the two stages [1], [2]. The 
parameters obtained in the first stage become observations in the second stage. Therefore, for 
every parameter, an equation like (9) should be drawn: 
 1 0

xx v x dx    (9) 
or 
 0 1( )xv dx x x    (10) 

The above equations elements are denoted as follows: 
x1 - estimated value of unknown x obtained in stage 1. 
vx - residual for unknown x. 
x0 - provisional value of the unknown x. 
dx – differential shift of unknown x. 
If we will denote: 

 0 1
xl x x   (11) 

then Eq. (10) becomes: 
 x xv dx l   (12) 

Eq. (12) represents the functional model used to bring in the second stage, parameters 
obtained in first stage. Taking into account the observations made in the second stage the 
functional model for the sequential adjustment will be: 

 
      

      
      

x 1 x

21 222 2 2

I 0v x l
= +

A Av x l
 (13) 

The stochastic model is given by Eq. (14) and (15): 
  2

0 
-11

xx xxP = Σ  (14) 
and, the weight matrix which includes weights of the observations made in second stage: 

 
 
 
 

xx
s

2

P 0
P =

0 P
 (15) 

 Subsequent computations are made with the same Eq. as in least-square adjustment 
with observation equations shown by the formulae (1)÷(8). 
 

3. Coordinates and variance-covariance matrix conversion 
 
Adjustment of a GNSS network, as we have said, is performed in a 3D coordinate 

system. When combining satellite observations with terrestrial 2D observations, a conversion 
between Cartesian coordinate system and ellipsoidal geodesic coordinate system is needed. 
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Coordinates conversion 
Conversion between Cartesian geocentric coordinates and geodetic ellipsoidal 

coordinates will be realized with following Eq. [3]: 

 arctg YL
X

  (16) 

 0 2 2 2 1 2arctg
(1 )( )

ZB
e X Y


 

 (17) 

Geodetic coordinates B  and eH  are obtained iteratively applying Eq. (18), (19) and 
(20) until the desired precision is achieved: 
 2 2 1 2

1(1 sin )i iN a e B 
   (18) 

 

2 2 1 2
0

0
1

2 0
0

1

( ) , pentru 45
cos

(1 ) , pentru 45
sin

i
e i
i

i
i

X Y N B
B

H
Z e N B
B





 
 

 
   


 (19) 

 22 2 1 2

1arctg
( ) 1

i
i

e
i i

ZB
e NX Y

N H

 
 
  

   

 (20) 

Variance-covariance matrix conversion 
Conversion of variance-covariance matrix between the two coordinates system is 

given in (21) [4]. 
    -1 -1   

T

BLH XYZΣ = R H Σ R H   (21) 
where: 

 1

1 0 0
sin cos sin sin cos

1sin cos 0 ,  0 0
cos

cos cos cos sin sin 0 0 1

MB L B L B
L L

N B
B L B L B



 
 

      
             

  
 

R H   (22) 

Note that the unit measure for the elements in BLHΣ  matrix is radian. 
 

4. 2D Adjustment on the reference ellipsoid 
 

In this section, observations equations are presented for measurements of horizontal 
directions and distances. The coefficients of the equations are given for the ellipsoidal two-
dimensional adjustment model [5]. 

Observation equation for directions reduced on the ellipsoid surface 

 

 

0 0 0 0

0 0 0

0 0
0 * 0

0

sin cos cos sin

cos cos
       

ji j ji j j ij i
ij i j j i

ij ij ij

ij i i
i ij ij i

ij

A M A N B A M
v dz dB dL dB

s s s

A N B
dL A z

s





   
     

 
   

 (23) 
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Weights of direction observations 
Weights will be computed using the standard deviation of an observed direction (σα) 

and the a priori standard deviation of unit weight (σ0): 

 
2
0
2p





   (24) 

Observation equation for distances reduced on the ellipsoid surface 

 
 

0 0 0 0

0 0 0 *

cos sin cos cos

       -sin cos

s
ij ji j j ji j j j ij i i

ij i i i ij ij

v A M dB A N B dL A M dB

A N B dL s s

           

    
 (25) 

Weights of distance observations 
Standard deviation of a distance measured with total station is: 

  s a b s km     (26) 
Then, the weight of a distance equation will be: 

 
2
0
2s
s

p 


  (27) 

Notations 
In above equations following notations have been made: 
M, N – principal radii of curvature; 
A – geodetic azimuth; 
α, s – horizontal direction and ellipsoidal distance; 
B, L – geodetic coordinates; 
z – orientation unknown; 
 
5. Adjustment GNSS observations in Cartesian geocentric coordinate system 
 
For every observed GNSS baseline a system of three equations like (28) must be 

drawn [6]. 

 

 
 
 

0 0 *

0 0 *

0 0 *

X
ij j i j i ij

Y
ij j i j i ij

Z
ij j i j i ij

v dX dX X X X

v dY dY Y Y Y

v dZ dZ Z Z Z







      
      


     

 (28) 

Eq. (28) can be written in matrix form as: 
 ij ij ijv = A dX + l  (29) 
where: 
 X, Y, Z – geocentric Cartesian coordinates; 

 

0 0 *

0 0 *

0 0 *

1 0 0 1 0 0
0 1 0 0 1 0 ,  ,  ,  
0 0 1 0 0 1

i

iX
ij j i ij

iY
ij j i ij

jZ
ij j i ij

j

j

dX
dY

v X X X
dZ

v Y Y Y
dX

v Z Z Z
dY
dZ







 
 
                                    
  
 

ij ij ijA = v = dX = l =  (30) 
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Stochastic model for GNSS measurements 
 2

0  -1
MP = Σ  (31) 

where: 
MΣ  - variance-covariance matrix of GNSS measurements obtained after processing 

the GNSS baselines. 
6. Case study 
 
Based on the theoretical aspects presented so far, a case study on a geodetic network is 

presented. In the studied network satellite and terrestrial observations have been made. The 
measurements will be separated in two groups (satellite and terrestrial) and adjusted 
accordingly through sequential adjustment model. The chart of the process is shown in Fig. 1. 

 

 
Fig. 1. Sequential adjustment of combined geodetic networks chart 

 
GNSS network adjustment 
In first stage GNSS measurements will be adjusted in 3D Cartesian coordinate system 

using the mathematical model shown in section 5. The reference system for the geodetic 
network is ETRS89. GNSS network characteristics are presented in Table 1 and GNSS 
observations are shown in Fig. 2. 

 
Table 1. GNSS network characteristics 

Reference system ETRS89 Position unknowns 12 
Coordinate system Cartesian geocentric GNSS baselines  6 
Network dimension 3D No. of observations 18 
No. of points 5 Redundancy 6 
No. of fixed points 1 Network type minimally constrained 
No. of free points 4 Rank-defect 0 
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Fig. 2. Excerpt from GNSS observations 

 
Results of the adjustment are shown in Fig. 3 and the network plot in Fig. 5. 

 
Fig. 3. GNSS network adjustments results in Cartesian coordinate system 

 

 
Fig. 4. GNSS network adjustments results in geodesic coordinate system 

 
Because in the second stage the adjustment will be performed on the reference 

ellipsoid, results from the first stage will be converted from Cartesian Geocentric coordinate 
system to GRS 80 ellipsoidal coordinate system. This conversion is presented in section 3 
Results are shown in Fig. 4. 

 

 
Fig. 5. GNSS network plot 

 
Sequential adjustment of combined geodetic network 
The characteristics of the combined 2D geodetic network are shown in Table 2. 
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Table 2. Combined geodetic network characteristics (sequential adjustment) 
Reference system ETRS89 No. of stations  17 
Coordinates system Geodetic No. of elements 

from previous 
adjustment 

8 Ellipsoid GRS80 

Network dimension 2D No. of measurements 83 
No. of points 20 Directions measured 39 
No. of fixed points 0 Distances measured 44 
No. of free points 20 Redundancy 34 
Position unknowns 40 Rank-defect 0 

Note that, because in the second stage the adjustment is performed in a two-
dimensional coordinate system, only the 2D component from GNSS data was kept. The 
terrestrial measurements are presented in Fig. 6. 

 
Fig. 6. Excerpt from terrestrial observations files 

 

 
Fig. 7. Combined geodetic network plot  
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The adjustment of the combined geodetic network is performed using the sequential 
model, thus adding the terrestrial measurements to the GNSS network. The mathematical 
model for sequential adjustment is shown in section 2, while the observation equations and 
weights for terrestrial measurements are presented in section 4. 

Final results for the combined geodetic network adjustment and the network plot are 
shown in Fig. 7, and respectively in Fig. 8. 

 

 
Fig. 8. Combined geodetic network – final results in geodetic coordinate system 
 

7. Conclusions 
 
Final results obtained using sequential adjustment model are expected to be the same 

as if measurements would have been processed together. 
It is not necessary to now the configuration of the network adjusted in first stage, nor 

the type of the measurements involved. The only things relevant for the adjustment in the 
second stage are the parameter values and the variance-covariance matrix obtained in first 
stage. 

Through the sequential model, precisions of the control points can be brought into the 
mathematical adjustment model. 

The method presented in this paper is very useful to make the transition from three-
dimensional positioning to two-dimensional positioning. 

Even if control points are not assumed fixed in the second stage, the normal equation 
matrix isn’t rank-deficient because the datum is fixed by the positions of points computed in 
the first stage and introduced as observations in the second stage. 

In the end, if needed, the results in the geodetic ellipsoidal coordinate system can be 
converted or transformed in any map projection using the corresponding relation. 
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