METHODS OF DETERMINATION OF A POINT WHERE A GALLERY BREAKS THROUGH A DEPOSIT

Roxana Claudia HERBEI, Lecturer Ph.D. Eng., University of Petrosani, Romania
Mihai Valentin HERBEI, Assoc. Prof. Ph.D. Eng., Banat University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
mihai_herbei@yahoo.com
Radu BERTICI, Lecturer Ph.D. Eng., Banat University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania

Abstract: The problems of underground mining are based on the realization of a stable and precise underground topographic base made under optimum conditions, fulfilling the required conditions can be solved using the vector methods presented in Chapter 6, solving based on analytical, trigonometric and graphical processes. The introduction of an information system for solving the problems of mine penetration in the conditions of using a spatial reference system in optimal conditions of realization of the underground topographic networks of support represents an important contribution in the selection, programming and determination of elements of breaking of mining works performed in optimal conditions, efficient, accurate and economical.

Keywords: gallery, mining topography, mining works, deposit, determination

1. Introduction

The most important part of the mining topography, in the mining operations, consists of mining strikes works. The paper contains the topographic calculation of a mining work to determine the point where a gallery breaks through a deposit.

These works must meet certain conditions related to local conditions, deposits and surrounding rocks (geometric, tectonic, etc.) as well as technical conditions of production processes (technical and technological), extraction works. These issues included references to the spatial location of the deposits and the mutual correlation between them.

In these problems, some assimilations of principle are made as follows:
- The galleries will be reduced to their axes, so they will be assimilated to some vectors similar to the vectors in plan and space or curves;
- Layers and pylons will be assimilated to the mathematical planes in space, so they will be determined by the usual mathematical elements - points, straight and vectors.

2. Materials and Methods

One of the methods appropriate to the representation of mining works and geological formations is the vector method. The vector is the geometric element of representation characterized by direction, sense, origin and size.

In the vector representation method, the mines and deposits are approximated by some vectors because their geometrical elements are direction, inclination, and magnitude.

Mining strikes occupy a particular importance in topographic activity. Mining works that are carried out through mining penetrations must always meet conditions imposed by
geological factors and miners, solving them by different ways (analytical, trigonometric, graphical, geometric).

These types of problems are useful in designing horizontal, sloping, vertical, and minimal mining.

These issues are grouped so that solving is unique, such as:
- the intersection of mining works with strata;
- intersections of strata;
- intersections between mining works,
- problems that are reduced to straight and plane intersections in space.

The elements of definition that characterize mining are:
- a point P1 (x1, y1, z1) on the axis of a gallery;
- θ1 axis orientation and
- φ1 axis declination

So, the defining elements of a straight line: D1 [P1 (x1, y1, z1), θ1, φ1].

The equation of a straight line passing through a point of direction and inclination is shaped:

\[
(D_1) \frac{x - x_1}{\alpha_1} = \frac{y - y_1}{\beta_1} = \frac{z - z_1}{\gamma_1} = \lambda \tag{1}
\]

where:
\(\alpha_1, \beta_1, \gamma_1 \) - are the right-wing directors of the straight line:
\(\alpha_1 = \pm \cos \phi_1 \cos \theta_1; \)
\(\beta_1 = \pm \cos \phi_1 \sin \theta_1; \)
\(\gamma_1 = \pm \sin \phi_1; \)
\(\lambda \) = parameter

The unitary vector \(\mathbf{\rho}_1 \) of D1, which characterizes the straight-line direction, has the following form:

\[
\mathbf{\rho}_1 = \alpha_1 \mathbf{i} + \beta_1 \mathbf{j} + \gamma_1 \mathbf{k} \tag{2}
\]

where \(\mathbf{i}, \mathbf{j}, \mathbf{k} \) - are vector vertices of the vector \(\mathbf{\rho}_1 \) correspondent to the axis x, y, z.

Considering other straight line D2 the angle \(\omega \) between the two straight lines is given by the following relation:

\[
\cos \omega = \alpha_1 \alpha_2 + \beta_1 \beta_2 + \gamma_1 \gamma_2 \tag{3}
\]

or
\[
\cos \omega = \cos \phi_1 \cos \phi_2 \cos (\theta_2 - \theta_1) + \sin \phi_1 \sin \phi_2 \tag{4}
\]

A plan (Q) is individualized by a point P0 (x0, y0, z0), the orientation \(\theta_p \), which is the orientation direction of a horizontal plane and the slope of the plane, which is the angle of inclination of the highest slope, so the plan (Q) is given by: [P0(x0, y0, z0), \(\theta_p \), \(\nu \)].

The equation of a plane Q containing the point P0 (x0, y0, z0) and is perpendicular to a given straight line whose cosine directives are \(\alpha, \beta \) and \(\gamma \) equivalent to \(\alpha_p, \beta_p \) and \(\gamma_p \) is given by the relationship:

\[
(Q): \alpha_p (x - x_0) + \beta_p (y - y_0) + \gamma_p (z - z_0) \tag{5}
\]
In which:

\[\alpha_p = \pm \sin \theta \sin \phi \]
\[\beta_p = \pm \sin \theta \cos \phi \]
\[\gamma_p = \cos \psi \]

These principles underlie the mining topography problem solving.

3. Results and Discussion

Methods of solving the problems of mining topography

The most important mining problems are the penetration problems that arise in the case of mining projects or the expansion of existing ones in all the underground working phases concerning the opening, preparation and exploitation of the deposits with useful mineral substances, by the way of solving, provides graph-analytical documentation that implements the projected elements.

Breaking a deposit with a mining work (Determining the point where a gallery breaks through a deposit)

The axis of the gallery is represented by the right \(D_0 \) given by:

- points \(P_{104} \) and \(P_{209} \):
- orientation \(\theta_{209-104} \), noted with \(\theta_0 \):
- declination \(\varphi_{209-104} \), noted with \(\varphi_0 \).

and the deposit is given by the \(Q \) plane defined by:

- point \(P_1(x_1, y_1, z_1) \):
- orientation \(\theta_p \):
- declination \(\varphi \).

It is determined the point \(P (x_p, y_p, z_p) \) where the gallery will penetrate the plane of the deposit.

Analytical solving

For the straight line \(D_0 \) there are known: \(P_{104}(x_{104}, y_{104}, z_{104}) \), \(P_{209}(x_{209}, y_{209}, z_{209}) \). It is calculated \(\theta_0 \) and \(\varphi_0 \).

Write the equation of the straight line that passes through \(P_{104} \) and has the orientation \(\theta_0 \) and the declination \(\varphi_0 \):

\[\frac{X - X_{104}}{\alpha} = \frac{Y - Y_{104}}{\beta} = \frac{Z - Z_{104}}{\gamma} \]

(6)

where:
\[\alpha = \cos \varphi_0 \cos \theta_0 \]
\[\beta = \cos \varphi_0 \sin \theta_0 \]
\[\gamma = \sin \varphi_0 \]
The equation of the straight line can be written in the parametric form:

\[X = X_{104} + \lambda \alpha \]
\[Y = Y_{104} + \lambda \beta \]
\[Z = Z_{104} + \lambda \gamma \]

(7)

The parametric equation of the plane has the following form:

\[\alpha_p (X - X_{p1}) + \beta_p (Y - Y_{p1}) + \gamma_p (Z - Z_{p1}) = 0 \]

(8)

where:

\[\begin{align*}
X_p &= X_{104} + \lambda \alpha_{104} \\
Y_p &= Y_{104} + \lambda \beta_{104} \\
Z_p &= Z_{104} + \lambda \gamma_{104}
\end{align*} \]

The parameter \(\lambda \) can be expressed as:

\[\lambda = \frac{\alpha_p (X_{p1} - X_{104}) + \beta_p (Y_{p1} - Y_{104}) + \gamma_p (Z_{p1} - Z_{104})}{\alpha \alpha_p + \beta \beta_p + \gamma \gamma_p} \]

By replacing \(\lambda \) into the parametric equation of the straight line, there are obtained the coordinates of the point \(P(x_P, y_P, z_P) \) where the gallery squeezes the plane of the deposit.

Trigonometric solving

The points \(P_{104} \) and \(P_1 \) are into the same horizontal plan. The following relations give the straight-line orientation \(\theta_{104-P} \) and its length:

\[\tan \theta_{104-P} = \frac{\Delta y_{104-P}}{\Delta x_{104-P}} \Rightarrow \theta_{104-P} = \arctan \frac{\Delta y_{104-P}}{\Delta x_{104-P}} \]

\[\tan (\theta_{104-P} + 50^\circ) = \frac{\Delta x + \Delta y}{\Delta x - \Delta y} \]

(9)

If the tangent value is greater than 2, the relationship is used:

\[\cot (\theta_{104-P} + 50^\circ) = \frac{\Delta x - \Delta y}{\Delta x + \Delta y} a = \frac{\Delta x_{104-P}}{\cos \theta_{104-P}} = \frac{\Delta y_{104-P}}{\sin \theta_{104-P}} \]

(10)

As we know: the orientation of the straight \(00 \), the orientation of the plane \(\theta_p \) and the orientation of the straight \(\theta_{104-P} \) can calculate the angles:

\[\alpha = \theta_0 - \theta_{P-104} \]
\[\beta = \theta_p - \theta_0 \]
\[\gamma = \theta_{104-P} - \theta_p \]

For validation: \(\alpha + \beta + \gamma = 200^\circ \)
The distance S_{104-P} is calculated with the following relation:

$$S = S_{104-P} = \frac{a \sin \beta_{tgv}}{\tan \phi_{104-209} + \sin \alpha_{tgv}}$$

(11)

Using the distance we calculate the coordinates of the point P:

$$\begin{align*}
 x_P &= x_{104} + S \cos \theta_{104-209} \\
 y_P &= y_{104} + S \sin \theta_{104-209} \\
 z_P &= z_{104} + Stg \theta_0
\end{align*}$$

(12)

Fig. 1. Spatial representation

Fig. 2. Graphical solving
The following is the algorithm in the pseudo-code that underlies the program in Microsoft Excel that solves the problem presented above.

\[D_5 \leftarrow 28672 \]
\[D_6 \leftarrow 75083 \]
\[D_7 \leftarrow 449,5 \]
\[D_9 \leftarrow 110 \]
\[D_{11} \leftarrow 15 \]
\[D_{15} \leftarrow 28610 \]
\[D_{16} \leftarrow 75125 \]
\[D_{17} \leftarrow 450 \]
\[D_{19} \leftarrow 15,25 \]
\[D_{21} \leftarrow -10 \]

\[M_4 \leftarrow \cos \left(\pi \times \frac{D_{19}}{200} \right) \cdot \cos \left(\pi \times \frac{D_{21}}{200} \right) \]
\[N_4 \leftarrow \sin \left(\pi \times \frac{D_{19}}{200} \right) \cdot \cos \left(\pi \times \frac{D_{21}}{200} \right) \]
\[Q_4 \leftarrow \sin \left(\pi \times \frac{D_{21}}{200} \right) \]
\[M_7 \leftarrow \sin \left(\pi \times \frac{D_9}{200} \right) \cdot \sin \left(\pi \times \frac{D_{11}}{200} \right) \]
\[N_7 \leftarrow -\cos \left(\pi \times \frac{D_9}{200} \right) \cdot \sin \left(\pi \times \frac{D_{11}}{200} \right) \]
\[Q_7 \leftarrow -\cos \left(\pi \times \frac{D_{11}}{200} \right) \]

\[N_9 \leftarrow \frac{M_7 \cdot (D_5 - D_{13}) + N_7 \cdot (D_6 - D_{16}) + O_7 \cdot (D_7 - D_{17})}{M_4 \cdot M_7 + N_4 \cdot N_7 + O_4 \cdot O_7} \]
\[N_{11} \leftarrow D_{15} + N_9 \cdot M_4 \]
\[N_{12} \leftarrow D_{16} + N_9 \cdot N_4 \]
\[N_{13} \leftarrow D_{17} + N_9 \cdot O_4 \]

% point of punching
\[D_{24} \leftarrow N_{11} ; \% x \]
4. Conclusions

The programs developed for all the existing situations in the mining activity in the field of penetration are accessible to any user, the program developed in Excel takes over the known elements in the analyzed space, the elements determined by the use of the different types of measurements and the elements characterizing the mining carried out by the penetration under the precision conditions high, efficient and in optimal and increased safety conditions.

5. References

2. Stoian I., Bârliba L. L., Elemente de fotografmetrie, Eurobit, Timișoara, 2009;
3. Herbei, M., GIS si Modelare cartografica. Universitas, Petroșani, 2015;
5. Herbei M., Sala F., Use Landsat Image to evaluate vegetation stage in sunflower crops, USAMV Bucuresti, AgroLife Scientific Journal - Volume 4, Number 1, pp. 79-86., 2015;
12. www.pix4d.com;